Hello,<br><br>Here is a snippet of LU decomposition code that illustrates the decomposition, solution, and then solution check via blas based routines for triangular matrix multiplication:<br><br>;; decompose<br>(lu-decomposition mat per)<br>
;; solve for x given b<br>(lu-solve mat per b x)<br>;; check by multiplying mat by x. But mat is now a product of tridiagonal matrices L and U.<br>;; The LUx multiplication is done in two stages as L(Ux). For the upper multiplication we<br>
;; specify the matrix-product-triangular using the Upper and :NonUnit diagonal. <br>;; For the lower, we specify :Lower and :Unit diagonal<br>(matrix-product-triangular<br> mat (matrix-product-triangular mat x 1<br>
:Upper :NoTrans :NonUnit)<br> 1 :Lower :NoTrans :Unit))<br><br>One can off course save the matrix mat before the decomposition and then use a direct matrix multiplication.<br><br>Mirko<br>
<br>