
Fetter Design Specification

Rayiner Hashem

July 9, 2005

1 Introduction

1.1 Intention

The purpose of this document is to specify, in detail, the design of the fetter
C++ binding generator. It attempts to explain the syntax and semantics of
the input file, the structure of the program, the intermediate representation
used by the frontend and backend, the design of the utility library and the
overall semantics of bindings generated by the program. It is intended that
this document be updated continuously as the program evolves, and serve
as a reference guide for developers interested in writing language-specific
backends or modifying the program itself.

1.2 Notation

In situations where it is necessary to represent objects or algorithms in the
abstract, a truncated form of Common Lisp is used. For example, the defclass
syntax is used to represent class types, with the initial ’defclass’ element
omitted for brevity. It is expected that despite the truncation, the semantics
of the pseudo-code will be clear to Common Lisp programmers.

1.3 Theory of Operation

Fetter is an additional tool invoked during the build process for a program,
analogous to an interface definition language (IDL) compiler or preprocessor.
Given an input file specifying one or more C++ header files, it generates
a module that allows code in the target language to access the functions,

1

constants, and classes declared in those headers. For Lisp, for example,
given an input file fetter generates a package containing foreign function
interface (FFI) declarations. Conceptually, the fetter input file is analogous
to a package definition in which C++ code and objects are exported instead
of Lisp code and objects.

1.4 System Structure

Fetter is composed of several components: a frontend, one or more backends,
and an utility library. The frontend is responsible for processing input files
and generating an intermediate representation (IR) of the C++ headers ref-
erenced in those files. It is also responsible for simplifying the IR to make
it more easily digestible by the backends. The backend for a given target
language is responsible for taking the simplified IR and generating from it
appropriate FFI declarations. The utility library exists to provide stub-code
generated by backends with common functionality, in particular routines for
constructing virtual function tables (v-tables) for specified classes.

2 frontend

2.1 Input File

Conceptually, fetter’s input files are analogous to a defpackage declaration in
Lisp. The input file specifies the headers to parse as well as options for con-
trolling the form of the generated bindings. It is illustrative to demonstrate
a sample file. This file shows how to export a few functions from the SDL
library. One of the functions is annotated to signal to the backend that the
return parameter should be converted into a Lisp string.

(de fb ind ing ” sd l− l i b r a ry ”
(nicknames ” sd l ”)
(i n c lude ”SDL. h”)
(export ”SDL Init ” ”SDL Quit” ”SDL GetError”)
(ov e r r i d e ”SDL GetError” (” s t r i n g ” (” void ”))))

As the listing shows, the input file is in prefix form, and besides the
initial defbinding element, can contain three constructs. The semantics of
these constructs are listed below.

2

• nicknames: One or more strings signifying the nicknames for the gen-
erated module. For the Lisp backend, these nicknames are passed un-
changed to the defpackage declaration.

• include: A list of header files that should be imported into the binding.
This list can be constructed assuming the default C lookup rules.

• export: A list of symbols that should be exported by the binding.

• override: A declaration annotating functions or methods with addi-
tional information about their parameters. A declaration takes the
form of a symbol string and a list of the form (return-value (arg1 arg2...
argn)). In the declaration, the real types of the function can be replaced
with symbols that present additional information about the parameter.

It should be noted that symbol names in the input file should be fully-
qualified in C++ syntax. Thus, a class foo within the namespace bar should
be referred to as foo::bar. In order to improve the ease-of-use of fetter, it
would be highly desirable to allow regular expressions in the symbol strings,
to allow specification of multiple overrides with a single statement.

2.2 C++ Header Parsing

Fetter uses GCC-XML to parse C++ header files. GCC-XML uses a slightly
modified version of the GCC C++ parser to generate an XML file describing
the C++ constructs defined in a header file. Fetter parsers this XML file
to generate its IR of the header file. The GCC-XML file format itself is
not described here, as it is specified in [1]. A few notes about the format
are in order, however. The XML file format is slightly unusual in that it
is not explicitly hierarchical. Constructs that are explicitly nested in C++
header files, such as member fields, appear in a flat node-space in the XML
format. Hierarchical information inherent in the C++ header is specified not
by nesting of XML nodes, but rather by attributes in certain nodes named
”context” or ”member”. It is important to keep this feature of the file format
in mind when attempting to understand how fetter handles GCC-XML’s
output files.

3

2.3 Intermediate Representation

In the frontend, GCC-XML files are parsed into an intermediate represen-
tation (IR) to make the information easier to manipulate in later stages of
the program. The IR is a directed graph, with types represented as nodes
and interactions between them represented as edges. The IR exists in the
frontend as a set of objects. The class hierarchy for these objects is described
below.

• (annotable ()(annotations)): The base class, allows arbitrary annota-
tions to be added to IR elements.

• (node (annotable)(name)): Represents nodes in the IR.

• (type (node)()): Represents C++ types.

• (namespace-type (type)()): Represents the type of a namespace, which
is defined as the set of definitions contained within the namespace.
There is no particularly good reason to define namespaces this way
instead of having a dedicated namespace node, but having a namespace-
type nicely parallels how functions are handled in the IR.

• (fundamental-type (type)()): Represents fundamental C++ types like
int or float.

• (pointer-type (type)()): Represents pointer and reference types.

• (array-type (type)(size)): Represents arrays of a given length.

• (enum-type (type)()): Represents a C++ enumeration.

• (struct-type (type)()): Represents simple structures and classes with
no member functions.

• (union-type (type)()): Represents simple unions.

• (class-type (type)()): Represents structures and classes with member
functions or base classes.

• (function-type (type)()): Represents prototypes of functions.

• (alias-type (type)()): Represents typedefs.

4

• (edge (annotable)()): Represents edges in the IR.

• (returns (edge)()): A returns edge from node A to node B signifies that
objects of type A return objects of type B.

• (receives (edge)(name)): A receives edge from node A to node B sig-
nifies that objects of type A receive objects of type B as parameters.

• (defines (edge)(name)): A defines edge from node A to node B signifies
that the definition of A contains the definition of B.

• (allocates (edge)(name value)): An allocates edge from node A to node
B signifies that objects of type A allocate objects of type B as part of
their in-memory representation.

• (extends (edge)(name value)): An extends edge from A to B signifies
that the definition of A is an extension of the definition of B.

This class hierarchy is designed with an eye towards making it easy to ma-
nipulate the IR and to generate declarations using graph traversals. In partic-
ular, it is designed so that the declaration corresponding to any node can be
emitted in response to a multi-method dispatch on the type of the node, the
type of the parent node, and the type of the edge between them. One of the
implications of this design is that there are no explicit nodes corresponding
to function, namespace, or variable declarations. Instead, these constructs
are represented using an edge between two type nodes. For example, function
declarations are specified by an allocates edge from a namespace-type node
to a function-type node. Declarations of namespaces, global variables, and
structure member fields are represented in a similar manner.

2.4 Simplification Passes

Before being sent to the backend, the IR is subject to a series of simplifi-
cation passes in order to reduce the number of special cases that must be
considered in the backend. The specific simplification passes applied to the
IR is dependent on the backend. It is conceivable, for example, to have a
source-to-source backend that required no simplification passes. In real back-
ends, it is expected that one or more simplifications will be necessary. A list
of possible such simplification passes is presented below.

5

• Collapse Namespaces: Most languages that will potentially have fet-
ter backends have no feature analogous to C++’s arbitrarily nested
namespaces. While Lisp packages could be used to emulate some uses
of nested namespaces, a design goal of fetter is to keep a 1:1 mapping
between a fetter input file and an output Lisp package. This simplifi-
cation pass collapses namespaces and changes the names of members
to eliminate conflicts. It is expected that the precise naming behavior
will be specifiable as a user-provided policy.

• Collapse Nested Definitions: Most FFIs do not allow nesting of struc-
ture and type declarations as C and C++ do. For example, whereas
a C++ structure can define substructures, no FFIs allow this sort of
nested definition. This pass generates fully equivalent definitions for
such cases by pulling child definitions out of their parents and renaming
them to eliminate conflicts. As with the previous simplification pass, it
is expected that the naming policy will be a user-specifiable parameter.

• Name Anonymous Nodes: Many nodes in the IR may not have names,
as a result of the underlying C++ constructs. For example, nested
structures used only to define a single field will generally be anony-
mous. In many cases, to preserve the proper semantics, the backend
will have to generate declarations for these anonymous nodes. This
pass makes proper generation of these declarations possible by assign-
ing names to all anonymous nodes in the IR. These names need not
be human-readable, since they will never be referenced directly by the
programmer, so any algorithm that assigns unique names will suffice.

• Convert Enumerations: Not all the FFIs fetter could potentially target
have a way to define enumerations. This pass generates fully equiva-
lent definitions for enumerations by replacing them with appropriately-
named sets of constant variables.

• Convert Arrays: Not all FFIs have a way to specify that a foreign type
is an array. This pass generates equivalent definitions for arrays by
converting them to bare pointers.

• Promote Structs: The C++ conception of a structure differs from fet-
ter’s conception of a structure. In C++, struct and class are equivalent
except for the default visibility of members. In fetter’s IR, structures

6

are plain records, with no member functions, no members that contain
member functions, and no base classes. Basically, they are the same
as a struct in C. This pass looks for struct-type nodes in the IR that
violate these restrictions and converts them to class-type nodes.

• Demote Classes: This pass is similar to the one above, except that
it looks for class-type nodes that meet the aforementioned restrictions
and demotes them to struct-type nodes.

• Mark Simple Classes: There is a subset of classes that can be handled
with a much less code than is required to implement full class semantics.
Specifically, classes that define no virtual member functions and have
no bases that define any virtual member functions can be treated as
simple structures and their member functions can be treated as regular
functions that accept a pointer to the object as their IRst parameter.
This pass looks for such classes and adds an annotation to their class-
type node signaling to the backend to perform this optimization

• Mark Final Classes: Classes that will not be subclassed from Lisp code
also require fewer declarations than is required for classes that exhibit
full class semantics. This pass identifies such classes, using information
provided by the user in the input file, and marks the appropriate class-
type nodes in the IR.

• Annotate Memory Layout: While FFI’s generally have some ability to
discover the memory layout of C code, for example, being able to find
the offsets of member fields in structures, none have the full abilities
required for C++ bindings. This pass annotates the IR with informa-
tion about the in-memory layout of objects, specifying, for example,
the v-table offsets of member functions.

• Sort Definitions: Not all FFIs are insensitive to the order of declara-
tions in the source file. Since GCC-XML does not define any particular
ordering of definitions within its XML files, a traversal of the IR will
not necessarily create FFI declarations in dependency order. For FFIs
that cannot tolerate this, a topological sort of the IR could be used to
arrange nodes in their proper order. However, the IR is not necessarily
acyclic, because the underlying C++ definitions may be cyclic. Prob-
lematically, GCC-XML does not emit nodes for forward declarations,

7

so there is no way to eliminate these cycles before constructing the
IR. This pass will use the FFI’s mechanism for forward declarations in
conjunction with heuristic approaches for roughly topologically-sorting
graphs to order the IR before generating FFI declarations.

2.5 GCC-XML to IR Mapping

The mapping from the GCC-XML input file to the frontend’s IR is for the
most-part straightforward. This section specifies how each construct in the
XML input file maps to nodes and edges in the IR. To make the mapping
easier to follow, the list below is in the order node types are declared in the
GCC-XML DTD. Note that since the IR is a directed graph, it is important
to distinguish between an edges extending to a node and and edges extending
from a node.

• Argument: Represented as a receives edge from a function-type node
to a type node.

• ArrayType: Represented as an array-type node with an extends edge
to a type node.

• Base: Represented as an extends edge to a class-type node.

• Class: Represented as a class-type node.

• Constructor: Represented like a function with an annotation marking
it as a constructor.

• Converter: Represented like a function with an annotation marking it
as a converter.

• CvQualifiedType: Represented as annotations in the base type nodes.

• EnumValue: Represented as a allocates edge from an enum-type node
to a fundamental-type node of type integer with an annotation marking
it constant.

• Enumeration: Represented as a defines edge from a namespace-type
node to an enum-type node.

8

• Field: Represented as an allocates edge from a class-type node to a type
node.

• Function: Represented as an allocates edge from a namespace-type node
to a function-type node.

• FunctionType: Represented as a function-type node.

• FundamentalType: Represented as a fundamental-type node.

• Method: Represented as an allocates edge from a class-type node to a
function-type node.

• MethodType: Represented as a function-type node.

• Namespace: Represented as an allocates edge to a namespace-type
node.

• OperatorFunction: Represented like a function with an annotation
marking it as an operator.

• OperatorMethod: Represented like a method with an annotation mark-
ing it as an operator.

• PointerType: Represented as a pointer-type node.

• ReferenceType: Represented as a pointer-type node.

• Struct: Represented as a struct-type node.

• Typedef: Represented as an alias-type node.

• Union: Represented as an allocates edge from a namespace node to an
union-type node.

• Variable: Represented as a allocates edge from a namespace node to a
type node.

9

3 Common Lisp backend

3.1 Universal Foreign Function Interface (UFFI)

During the initial development of fetter, UFFI [2] will be the target backend
for Common Lisp. UFFI is an FFI abstraction designed for high performance
and portability to multiple Lisp implementations. As it is currently specified,
it contains enough functionality to enable significant access to C libraries.
However, by itself it is not powerful enough to allow full access to C++
libraries. In particular, it lacks callbacks and the ability to call through
function pointers. These features are all necessary to enable a high-level of
integration between C++ libraries and Common Lisp programs. Since fetter
will be developed in conjunction with the Hello-C project, it is expected that
as Hello-C stabilizes it will become the main backend for fetter.

3.2 Intermediate Representation

The backend does not define its own intermediate representation, since it
does not do any manipulation of UFFI constructs once they are generated.
Instead, it does a straightforward traversal of the IR, directly generating
UFFI declarations in the process.

3.3 IR to UFFI Mapping

The generation of UFFI declarations from the IR is done using a depth-
first traversal of the IR graph. Each stage of the traversal considers a pair
of nodes and the edge between them, and generates declarations based on
that consideration. The mapping between (node-type, edge-type, node-type)
combinations and UFFI constructs is detailed below. It should be noted that
many such combinations have no semantics, either because they cannot occur,
are removed by simplifications prior to reaching the backend, or because they
require no response. These combinations are omitted from the list below.

• (namespace defines (pointer-type or array-type)): def-foreign-type.

• (namespace allocates fundamental-type:constant): def-constant.

• (namespace defines enum-type:constant): def-enum.

10

• (enum-type allocates fundamental-type:constant): Fields in the def-
enum declaration.

• (namespace defines struct-type): def-struct.

• (struct-type allocates type): Fields in the def-struct declaration.

• (namespace defines union-type): def-union.

• (union-type defines type): Fields in the def-union declaration.

• (namespace allocates type): def-foreign-var.

• (namespace defines class-type): This case requires more code genera-
tion than the other cases and is described in the next section.

3.4 Binding to C++

Binding to C++ code is often identical to binding to C code. A significant
amount of functionality in C++ libraries can be accessed using regular UFFI
def-function declarations. There are a number of cases, however, in which
C++ code must be called differently from C++ code, and these are listed
below. Note that this list is based on the GCC C++ ABI [3].

• Non-static Non-virtual Methods: The calling convention for these func-
tions is identical to the regular C calling convention, except they take
a hidden first parameter — a pointer to the C++ object the method is
called on. This type of function can be handled simply by making this
parameter explicit then generating a def-function for the method.

• Virtual Methods: The calling convention for these functions is identical
to that of a non-static, non-virtual method called through a pointer.
The target of the call can be determined by indexing into a v-table
accessible from the object pointer. This type of function can be handled
by creating a stub function that performs the v-table lookup and calls
through the resultant pointer.

11

3.5 Integration with the Common Lisp Object System
(CLOS)

Integrating the C++ type hierarchy into the CLOS class hierarchy is a de-
sirable and sometimes necessary feature. Many C++ libraries, for example
Qt, depend on client programs subclassing library types. Integration of C++
and CLOS types can be achieved using a combination of Lisp CLOS proxy
objects, generic methods, stub functions, and a utility library capable of
generating v-tables for CLOS subclasses derived from C++ classes.

For each non-final C++ class, the UFFI backend generates a CLOS proxy
type. Objects of this type have no members other than a pointer to a native
C++ object. For each method in the class, the backend generates a CLOS
generic method that uses one of the techniques described in the previous
section to access its underlying C++ method. Additionally, it uses the utility
library to create a v-table for the class. It initializes this table to be a copy
of the C++ class’s v-table, then for each method overridden in Lisp code,
it initializes the corresponding table element to point to a stub method that
transfers control to the generic method dispatcher. This scheme allows calls
in both directions, from Lisp to C++ and from C++ to Lisp.

Having given a rough overview of how C++ and CLOS integration could
be achieved, it is interesting to touch upon what extensions to UFFI would
be necessary to allow this integration. The following list summarizes the
features necessary in UFFI for the aforementioned design to work properly.

• Calling functions through a pointer: This feature is necessary to access
C++ virtual functions, as well as to take advantage of some of the
features of regular C Libraries.

• Exporting Lisp functions to C code: This feature is necessary not only
for allowing the subclassing of C++ classes from Lisp code, but to take
advantage of any C library that requires client code to supply callbacks.

To maximize the ease-of-use of fetter-generated C++ bindings, the fol-
lowing features would be desirable in the target FFI.

• Subclassing of foreign types: It significantly eases the work of the back-
end, when handing C++ class declarations, if it is able to create native
types that are subclasses of foreign types.

12

• Control over type conversions during foreign calls: Integration of C++
libraries into Lisp code is significantly increased if the Lisp code can
work with native types rather than foreign types. Allowing the back-
end to specify to the FFI that C++ strings should be converted to
Lisp strings, or that C++ vectors should be converted to Lisp vectors
would eliminate the need for the backend to generate stub functions to
implement these conversions.

4 C++ Utility Library

Manipulating of v-tables is an ABI-specific, rather than backend-specific task.
Thus, it is desirable to define a utility library for the manipulation of v-tables
that can be shared by all fetter backends. The utility library must be able
to read a serialized version of the frontend IR and from it generate virtual
function tables for a given class. It must also be able to take the virtual
function table for an existing class and modify certain table entries to point
to backend-specified stub functions. These tasks can be accomplished in a
fairly straightforward manner using algorithms specified in the ABI for the
target compiler.

References

[1] http://www.gccxml.org/files/v0.6/gccxml-2004-11-19.dtd.txt:
Interim file format specification for GCC-XML 0.7, CVS version.

[2] http://uffi.b9.com/manual/: Universal Foreign Function Interface
Reference Manual.

[3] http://www.codesourcery.com/cxx-abi/abi.html: IA64 C++ ABI,
used as the cross-platform GNU C++ binary interface.

13

