
ASDF 3, or Why Lisp is Now an
Acceptable Scripting Language

François-René Rideau
Google

tunes@google.com

Abstract
ASDF, the de facto standard build system for Common Lisp, has
been vastly improved between 2012 and 2014. These and other im-
provements finally bring Common Lisp up to par with "scripting
languages" in terms of ease of writing and deploying portable code
that can access and "glue" together functionality from the underly-
ing system or external programs — except this time in a language
with reasonable semantics, efficient implementations, and extensi-
ble syntax. We describe the most salient improvements in ASDF
3 and how they enable previously difficult and portably impossi-
ble uses of the programming language. We discuss past and future
challenges in improving this key piece of software infrastructure,
and what approaches did or didn’t work in bringing change to the
Common Lisp community.

Introduction
Better late than never, with the release of ASDF 3 in May 2013,
one can write portably in Common Lisp (CL) all the programs for
which one traditionally uses so-called "scripting" languages: one
can write small scripts that glue together functionality provided by
the operating system (OS), external programs, C libraries, or net-
work services; one can scale them seamlessly into large, maintain-
able and modular systems; and one can make those new services
available to other programs via the command-line as well as via
network protocols, etc.

ASDF has been the de facto standard build system for portable
CL software since shortly after its release by Dan Barlow in 2002
(Barlow 2004). The purpose of a build system is to enable divi-
sion of labor in software development: source code is organized
in separately-developed components that depend on other compo-
nents, and the build system transforms the transitive closure of
these components into a working program.

ASDF 3, the latest rewrite of the system, aeside from fixing nu-
merous bugs, sports a portability layer, UIOP, that makes portable
scripting possible. It enables the writing of Lisp programs that may
be invoked from the command line or may spawn external pro-
grams and capture their output. It allows delivering these programs
as standalone executable files; moreover the companion script cl-
launch (see section 2.9) can create light-weight scripts that can
be run unmodified on many different kinds of machines, each dif-
ferently configured. Previously, key parts of a program had to be
configured to match one’s specific CL implementation, OS, and
software installation paths. Now, all of one’s usual scripting needs
can be entirely fulfilled using CL, benefitting from its efficient im-
plementations, hundreds of software libraries, etc.

In this article, we discuss how the innovations in ASDF 3 enable
new kinds of software development in CL. In section 1, we explain
what ASDF is about; we compare it to common practice in the C
world. In section 2, we describe the improvements introduced in

ASDF 3 and ASDF 3.1 to solve the problem of software delivery. In
section 3, we discuss the challenges of evolving a piece of commu-
nity software, concluding with lessons learnt from our experience.

This is the short version of this article. The appendices we
mention refer to the extended version (Rideau 2014), that also
includes a few additional details.

1. What ASDF is
1.1 ASDF: Basic Concepts
1.1.1 Components
ASDF is a build system for CL: it helps developers divide soft-
ware into a hierarchy of components and automatically generates a
working program from all the source code.

Top components are called systems in an age-old Lisp tradition,
while the bottom ones are source files, typically written in CL.
Users may then operate on these components with various build
operations, most prominently compiling the source code (operation
compile-op) and loading the result into the current Lisp image
(operation load-op).

Several related systems may be developed together in the same
source code project. Each system may depend on code from other
systems, either from the same project or from a different project.
ASDF itself has no notion of repositories, but other tools on top
of ASDF do: Quicklisp (Beane 2011) packages together systems
from a project into a release, and provides hundreds of releases
as a distribution, automatically downloading on demand required
systems and all their transitive dependencies.

A system is itself organized into a hierarchy of components,
where each component may be either an individual file (usually,
a CL source file), or a module that may recursively contain other
components (usually, a subdirectory).

Further, each component may explicitly declare a dependency
on other components: whenever a component relies on declarations
or definitions of packages, macros, variables, classes, functions,
etc., present in another component, the programmer must declare
that the former component depends-on the latter.

1.1.2 Example System Definitions

(defsystem "fare-quasiquote" ...
:depends-on ("fare-utils")
:components
((:file "packages")
(:file "quasiquote"
:depends-on ("packages"))

(:file "pp-quasiquote"
:depends-on ("quasiquote"))))

Above is how the fare-quasiquote system is defined
(with elisions) in a file fare-quasiquote.asd. It contains



three files, packages, quasiquote and pp-quasiquote
(the .lisp suffix is automatically added based on the component
class; see Appendix C). The latter files each depend on the first file,
because this former file defines the CL packages1

Among the elided elements were metadata such as :license
"MIT", and extra dependency information for test purposes: :in-
order-to ((test-op (test-op "fare-quasiquote-
test"))). Notice how the system itself depends-on another sys-
tem, fare-utils, a collection of utility functions and macros
from another project, whereas testing is specified to be done by
fare-quasiquote-test, a system defined in a different file,
fare-quasiquote-test.asd, within the same project.

1.1.3 Action Graph
Building software is modeled as a Direct Acyclic Graph (DAG) of
actions. Each action is a pair of an operation and a component.
The DAG defines a partial order, whereby each action must be
performed, but only after all the actions it (transitively) depends-
on have already been performed.

For instance, in fare-quasiquote above, the loading of
(the compilation output of) quasiquote depends-on the compil-
ing of quasiquote, which itself depends-on the loading of (the
compilation output of) package, etc.

Importantly, though, this graph is distinct from the preceding
graph of components: the graph of actions is not a mere refinement
of the graph of components but a transformation of it that also
incorporates crucial information about the structure of operations.

ASDF extracts from this DAG a plan, which consists in a topo-
logically sorted list of actions, that it then performs in order, in a
design inspired by Pitman (Pitman 1984)

1.1.4 In-image
Last but not least, ASDF is an "in-image" build system, just
like the build systems that preceded it in the Lisp defsystem
tradition: it compiles (if necessary) and loads software into the
current CL image, and can later update the current by recompiling
and reloading the parts that have changed. For better or worse,
this notably differs from common practice in most other languages,
where the build system is a completely different piece of software
running in a separate process.2 On the one hand, it minimizes
overhead to writing build system extensions. But on the other hand,
it puts great pressure on ASDF to remain minimal.

Qualitatively, ASDF must be delivered as a single source file
and cannot use any external library, since it itself defines the code
that may load other files and libraries. Quantitatively, ASDF must
minimize its memory footprint, since it’s present in all programs
that are built, and any resource spent is spent by all.

Still, for all these reasons, ASDF follows the minimalist princi-
ple that anything that can be provided as an extension should be
provided as an extension and left out of the core. Thus it cannot
afford to support a persistence cache indexed by the cryptographic
digest of build expressions, or a distributed network of workers, etc.
However, these features are conceivable as ASDF extensions.

1.2 Comparison to C programming practice
Most programmers are familiar with C, but not with CL. It’s there-
fore worth constrasting ASDF to the tools used by C programmers
to provide similar services.

1 Packages are namespaces that contain symbols; they need to be setup
before they may be referred to.
2 Of course, a build system could compile CL code in separate processes,
for the sake determinism and parallelism: our XCVB did (Brody 2009); so
does Google’s blaze.

To build and load software, C programmers typically use make
to build the software and ld.so to load it. Additionally, they use a
tool like autoconf to locate available libraries and identify their
features. In many ways these C solutions are vastly better engi-
neered than ASDF. But in other important ways ASDF demonstrates
how these C systems have a vast amount of accidental complexity
that CL does away with thanks to better architecture.

• Lisp makes the full power of runtime available at compile-time,
so it’s easy to implement a Domain-Specific Language (DSL):
only the new functionality needs be defined, as an extension that
seamlessly combines with the rest of the language, including
other extensions. In C, every utility needs to onerously grow
an entire DSL from scratch; since the domain expert is seldom
also language expert with resources to do it right, this means
plenty of mutually incompatible, misdesigned, power-starved,
misimplemented languages that have to be combined through
an unprincipled chaos of expensive yet unexpressive means of
communication.

• Lisp provides full introspection at runtime and compile-time
alike, as well as a protocol to declare features and conditionally
read code and data based on them. Therefore you don’t need
dark magic at compile-time to detect available features. In C,
people resort to horribly unmaintainable configuration scripts
in a hodge podge of shell script, m4 macros, C preprocessing
and C code, plus often bits of python, perl, sed, etc.

• ASDF possesses a standard and standardly extensible way to
configure where to find the libraries your code depends on, fur-
ther improved in ASDF 2. In C, then are tens of incompatible
ways to do it, between libtool, autoconf, gconf, kde-
config, various manual ./configure scripts, and count-
less other protocols, so that each new piece of software requires
the user to learn a new ad hoc configuration method, making it
an expensive endeavour to use and/or distribute libraries.

• ASDF uses the very same mechanism to configure both runtime
and compile-time, so there is only one configuration mecha-
nism to learn and to use, and minimal discrepancy.3 In C, com-
pletely different, incompatible mechanisms are used at runtime
(ld.so) and compile-time (unspecified), which makes it hard
to match source code, compilation headers, static and dynamic
libraries, requiring complex "software distribution" infrastruc-
tures (that admittedly also manage versioning, downloading and
precompiling); this at times causes subtle bugs when discrepan-
cies creep in.

Nevertheless, there are also many ways in which ASDF pales
in comparison to other build systems for CL, C, Java, or other
systems:

• ASDF is not a general-purpose build system. Its relative sim-
plicity is directly related to it being custom made to build CL
software only. Seen one way, it’s a sign of how little you can
get away with if you have a good basic architecture; a simi-
larly simple solution is not available to most other programming
languages, that require much more complex tools to achieve a
similar purpose. Seen another way, it’s also the CL community
failing to embrace the outside world and provide solutions with
enough generality to solve more complex problems.

• At the other extreme, a build system for CL could have been
made that is much simpler and more elegant than ASDF, if it
could have required software to follow some simple organiza-
tion constraints, without much respect for legacy: a constructive

3 There is still discrepancy inherent with these times being distinct: the
installation or indeed the machine may have changed.

http://fare.tunes.org/files/asdf3/asdf3-2014.html#pathnames


proof of that is Alastair Bridgewater’s quick-build, being
a fraction of the size of the original ASDF, which is a fraction
of ASDF 3’s, and with a fraction of the bugs — but none of the
generality and extensibility (See section 2.10).

• Because of its age-old model of building software in-image,
what’s more in traditional friendly single-user, single-processor,
single-machine environments with a single coherent view of
source code and single target configuration, ASDF isn’t geared
at all to build large software in modern adverserial multi-user,
multi-processor, distributed environments where source code
comes in many divergent versions and yet as many configura-
tions. The new ASDF 3 action is consistent and general enough
that it could conceivably be made to scale, but that would be a
lot of work.

2. ASDF 3: A Mature Build
2.1 A Consistent, Extensible, Model
Surprising as it may be to all CL programmers who used it daily,
there was an essential bug at the heart of ASDF, present from the
very first day in 2001, and before it in mk-defsystem since
1990 (Kantrovitz 1990), that survived till December 2012, despite
all our robustification efforts since 2009 (Goldman 2010). Fixing it
required a complete rewrite of ASDF’s core. The entire story is in
Appendix F.

In the end, though, the object model of ASDF is at the same
time more powerful, more robust, and simpler to explain. It now
correctly computes and propagates timestamps, when it previously
didn’t try. Its traverse function is no longer dark magic, but
instead is a well-documented algorithm. It’s easier than before
to extend ASDF, with fewer limitations and fewer pitfalls: users
may control how their operations do or don’t propagate along the
component hierarchy. Thus, ASDF can now express arbitrary action
graphs, and could conceivably be used in the future to build more
than just CL programs.

The proof of a good design is in the ease of extending it.
And in Lisp, extension doesn’t require privileged access to the code
base. We thus tested our design by adapting the most elaborate
existing ASDF extensions to use it: POIU, and the bundle opera-
tions. The result was indeed cleaner, eliminating the previous need
to override sizable chunks of the infrastructure. Chronologically,
however, we consciously started this porting process in interaction
with developing ASDF 3, thus ensuring ASDF 3 had all the exten-
sion hooks required to avoid overrides.

2.2 Bundle Operations
Bundle operations create a single output file for an entire system or
collection of systems. The most directly user-facing bundle opera-
tion is fasl-op, that bundles into a single fasl all the individual
fasls from the compile-op outputs of each file in a system. This
bundle fasl may then be loaded by operation load-fasl-op.
Also lib-op links into a library all the object files in a system;
dll-op creates a dynamically loadable libary out of these files.
The above bundle operations also have so-called "monolithic" vari-
ants, that bundle all the files in a system and all its transitive de-
pendencies.

Bundle operations make delivery of code much easier. On
linker-based implementations such as ECL, loading bundle fasls
also consumes much fewer resources than loading a lot of small
fasls.4

4 Most CL implementations are able to dump an image of the heap on disk,
that can be loaded back in a new process; to build an application, you start
a small initial image, load plenty of code, dump an image, and there you
are. ECL, instead, relies on linking and initializer functions rather than on

The latter point is why bundle operations were initially intro-
duced as asdf-ecl, an extension to ASDF specific to ECL, back
in the day of ASDF 1. It was distributed with ASDF 2, though in a
way that made upgrade slightly awkward to ECL users, who had to
explicitly reload asdf-ecl after upgrading ASDF, even though it
was included by the initial (require "asdf"). In May 2012,
it was generalized to other implementations as the external sys-
tem asdf-bundle. This was then merged into ASDF during the
development of ASDF 3 (2.26.7, December 2012): not only did it
provide useful new operations, but the way that ASDF 3 was auto-
matically upgrading itself for safety purposes would otherwise have
broken things badly for ECL users if the bundle support weren’t it-
self bundled with ASDF.

In ASDF 3.1, using deliver-asd-op (previously misnamed
binary-op) you can create both the bundle fasl from fasl-op
and an .asd file to use to deliver the system in binary format only.

2.3 Understandable Internals
After bundle support was merged into ASDF (see section 2.2
above), it became trivial to add a new concatenate-source-
op operation to ASDF; thus ASDF could be developed as multiple
files as would improve maintainability, yet delivered as a single file
as it was strongly required to be, the concatenation of the source
files, in correct dependency order.

Breaking down ASDF into smaller, more intelligible pieces had
been proposed shortly after we took over ASDF; but we had re-
jected the proposal then on the basis that ASDF must not depend
on external tools to upgrade itself from source, another strong re-
quirement. With the new concatenate-source-op, an exter-
nal tool wasn’t needed for delivery and regular upgrade, only for
bootstrap. Meanwhile the break down had also become more im-
portant, since ASDF had grown so much, having almost tripled in
size since those days, and promising to grow some more. It was
hard to navigate that one big file, even for the maintainer, and prob-
ably impossible for newcomers to wrap their head around it.

To bring some principle to this break down (2.26.62), we fol-
lowed the principle of one-file, one-package, as demonstrated by
faslpath and quick-build, though not actively supported
yet by ASDF itself (see section 2.10). This ensured that files were
indeed providing related functionality, only had explicit dependen-
cies on other files, and didn’t have any forward dependencies with-
out special declarations. Indeed, this was a great success in making
ASDF understandable, if not by newcomers, at least by the main-
tainer himself; this in turn triggered a series of enhancements that
would not otherwise have been obvious or obviously correct, illus-
trating the principle that good code is code you can understand,
organized in chunks you can each fit in your brain.

2.4 Package Upgrade
Preserving the hot upgradability of ASDF was always a strong re-
quirement. In the presence of this package refactoring, this meant
the development of a variant of CL’s defpackage that plays nice
with hot upgrade: define-package. Whereas the former is not
guaranteed to work and may signal an error when a package is rede-
fined in incompatible ways, the latter will update an old package to
match the new desired definition while recycling existing symbols
from that and other packages.

Thus, in addition to the regular clauses from defpackage,
define-package accepts a clause :recycle, such that every
declared symbol is attemptedly recycled from the specified pack-
ages in the given order. For idempotence, the package itself must

dumping; to build an application, you link all the libraries and object files
together, and call the proper initialization functions in the correct order.
Because of the overhead of dynamic linking, loading a single fasl is much
preferrable to a lot of smaller fasls.

http://fare.tunes.org/files/asdf3/asdf3-2014.html#traverse
Robert Strandh
Don't use unqualified "this".



be the first in the list. For upgrading from an old ASDF, the :asdf
package is always named last.

Other extensions include :mix and :reexport. :mix mixes
imported symbol from several packages, automatically handling
clashes in favor of the earlier named packages. :reexport re-
exports the same symbols as imported from given packages, and/or
exports instead the same-named symbols that shadow them. ASDF
3.1 adds :mix-reexport and :use-reexport, which com-
bine :reexportwith :mix or :use in a single statement, which
is more maintainable than repeating a list of packages twice.

2.5 Portability Layer
Splitting ASDF into many files revealed that a large fraction of it
was already devoted to general purpose utilities. This fraction only
grew under the several following pressures: a lot of opportunities
for improvement became obvious after dividing ASDF into many
files; features added or merged in from previous extensions and li-
braries required new general-purpose utilities; as more tests were
added for new features, and were run on all supported implementa-
tions, on multiple operating systems, new portability issues cropped
up that required development of robust and portable abstractions.

The portability layer, after it was fully documented, ended up
being slightly bigger than the rest of ASDF. Long before that
point, ASDF was thus formally divided in two: this portability
layer, and the defsystem itself. The portability layer was initially
dubbed asdf-driver, because of merging in a lot of functional-
ity from xcvb-driver. Because users demanded a shorter name
that didn’t include ASDF, yet would somehow be remindful of it,
it was eventually renamed UIOP: the Utilities for Implementation-
and OS- Portability (and also what follows QWERTY). It was made
available separately from ASDF as a portability library to be used
on its own; yet since ASDF still needed to be delivered as a sin-
gle file asdf.lisp, UIOP was transcluded inside that file, now
built using the monolithic-concatenate-source-op op-
eration. At Google, UIOP is actually used for portability without
the rest of ASDF, the build being handled by Google’s blaze; this
led to UIOP improvements that will be released with ASDF 3.1.

Most of the utilities deal with providing sane pathname abstrac-
tions (see Appendix C), filesystem access, sane input/output (in-
cluding temporary files), basic operating system interaction: many
things for which the CL standard was lacking. There is also an ab-
straction layer over the less-compatible legacy implementations, a
set of general-purpose utilities, and a common core for the ASDF
configuration DSLs.5 Importantly for a build system, there are
portable abstractions for compiling CL files while controlling all
the warnings and errors that can occur, and there is a support for
the lifecycle of a Lisp image: dumping and restoring images, ini-
tialization and finalization hooks, error handling, etc. Yet the most
complex piece turned out to be a portable implementation of run-
program.

2.6 run-program

With ASDF 3, you can run external commands as follows:

(run-program ‘("cp" "-lax" "--parents"
"src/foo" ,destination))

On Unix, this recursively hardlinks files in directory src/foo into
a directory named by the string destination, preserving the
prefix src/foo. You may have to add :output t :error-
output t to get error messages on your *standard-output*
and *error-output* streams, since the default value, nil,

5 ASDF 3.1 notably introduces a nest macro, that nests arbitrarily many
forms without indentation drifting ever to the right. It makes for more
readable code without sacrificing good scoping discipline.

designates /dev/null. If the invoked program returns an error
code, run-program signals a structured CL error, unless you
specified :ignore-error-status t.

Such a utility is essential for ASDF extensions to portably exe-
cute arbitrary programs. With it, CL can replace any shell script. It
was a challenge to write: Each implementation provided a different
underlying mechanism with wildly different feature sets and count-
less corner cases. The better ones could fork and exec a process and
control its standard-input, standard-output and error-output; lesser
ones could only call the system(3)C library function. Moreover,
Windows support differed significantly from Unix. ASDF 1 itself
actually had a run-shell-command, initially copied over from
mk-defsystem, but it was more of an attractive nuisance than
a solution, despite many bug fixes: it was implicitly calling for-
mat; capturing output was particularly contrived; and what shell
would be used varied between implementation, even more so on
Windows.

ASDF 3’s run-program is full-featured, based on code orig-
inally from XCVB’s xcvb-driver (Brody 2009). It papers over
all these discrepancies to provide control of the program’s standard
output, using temporary files underneath if needed, Since ASDF
3.0.3, it can also control the standard input and error output. It ac-
cepts either a list of a program and arguments, or a shell command
string. Thus your previous program could have been:

(run-program
(format nil "cp -lax --parents src/foo ∼S"

(native-namestring destination))
:output t :error-output t)

Where (UIOP)’s native-namestring converts the path-
name object destination into a name suitable for use by the
operating system, as opposed to a CL namestring, that might
be escaped somehow.

You can also inject input and capture output:

(run-program ’("tr" "a-z" "n-za-m")
:input ’("uryyb, jbeyq") :output :string)

returns the string "hello, world". It also returns secondary
and tertiary values nil and 0 respectively, for the (non-captured)
error-output and the (successful) exit code.

Now run-program only provides a basic abstraction; a sepa-
rate system inferior-shell was written on top of UIOP, and
provides a richer interface, handling pipelines, zsh style redirec-
tions, splicing of strings and/or lists into the arguments, and im-
plicit conversion of pathnames into native-namestrings, of symbols
into downcased strings, of keywords into downcased strings with
a "–" prefix. Its short-named functions run, run/nil, run/s,
run/ss, respectively run the external command with outputs to
the Lisp standard and error output, with no output, with output to
a string, or with output to a stripped string. Thus you could get the
same result as previously with:

(run/ss ’(pipe (echo (uryyb ", " jbeyq))
(tr a-z (n-z a-m))))

Or to get the number of processors on a Linux machine, you can:

(run ’(grep -c "^processor.:"
(< /proc/cpuinfo))

:output #’read)

2.7 Configuration management
ASDF always had quite minimal support for configuration manage-
ment. ASDF 3 doesn’t introduce radical change, but provides more
usable replacements or improvements for old features.

For instance, ASDF 1 had always supported version-checking:
each component (usually, a system) could be given a version string

http://fare.tunes.org/files/asdf3/asdf3-2014.html#pathnames


with e.g. :version "3.1.0.94", and ASDF could be told to
check that dependencies of at least a given version were used,
as in :depends-on ((:version "inferior-shell"
"2.0.0")). This feature can detect a dependency mismatch
early, which saves users from having to figure out the hard way
that they need to upgrade some libraries, and which.

Now, ASDF always required components to use "semantic ver-
sioning", where versions are strings made of dot-separated numbers
like 3.1.0.97. But it didn’t enforce it, leading to bad surprises
for the users when the mechanism was expected to work, but failed.
ASDF 3 issues a warning when it finds a version that doesn’t fol-
low the format. It would actually have issued an error, if that
didn’t break backward-compatibility.

Another problem with version strings was that they had to be
written as literals in the .asd file, unless that file took painful
steps to extract it from another source file. While it was easy for
source code to extract the version from the system definition, some
authors legitimately wanted their code to not depend on ASDF it-
self. Also, it was a pain to repeat the literal version and/or the
extraction code in every system definition in a project. ASDF 3 can
thus extract version information from a file in the source tree, with,
e.g. :version (:read-file-line "version.text")
to read the version as the first line of file version.text. To
read the third line, that would have been :version (:read-
file-line "version.text" :at 2) (mind the off-by-
one error in the English language). Or you could extract the
version from source code. For instance, poiu.asd specifies
:version (:read-file-form "poiu.lisp" :at (1
2 2)) which is the third subform of the third subform of the
second form in the file poiu.lisp. The first form is an in-
package and must be skipped. The second form is an (eval-
when (...) body...) the body of which starts with a (def-
parameter *poiu-version* ...) form. ASDF 3 thus
solves this version extraction problem for all software — except
itself, since its own version has to be readable by ASDF 2 as well
as by who views the single delivery file; thus its version informa-
tion is maintained by a management script using regexps, of course
written in CL.

Another painful configuration management issue with ASDF 1
and 2 was lack of a good way to conditionally include files. One
could always use CL reader conditionals such as #+(or sbcl
clozure) but that means that ASDF could not even see the
components being excluded, should some operation be invoked
that involves printing or packaging the code rather than compile
it — or worse, should it involve cross-compilation for another
implementation with a different feature set. There was an obscure
way for a component to declare a dependency on a :feature,
and annotate its enclosing module with :if-component-dep-
fails :try-next to catch the failure and keep trying. But the
implementation was a kludge in traverse that short-circuited
the usual dependency propagation and had exponential worst case
performance behavior when nesting such pseudo-dependencies to
painfully emulate feature expressions.

ASDF 3 gets rid of :if-component-dep-fails: it didn’t
fit at all the fixed dependency model. A limited compatibility mode
without nesting was preserved to keep processing old versions of
SBCL. As a replacement, ASDF 3 introduces a new option :if-
feature in component declarations, such that a component is
only included in a build plan if the given feature expression is true
during the planning phase. Thus a component annotated with :if-
feature (:and :sbcl (:not :sb-unicode)) (and its
children, if any) is only included on an SBCL without unicode sup-
port. This is more expressive than what preceded, without requiring
inconsistencies in the dependency model, and with no pathological
performance behavior.

2.8 Standalone Executables
One of the bundle operations contributed by the ECL team was
program-op, that creates a standalone executable. As this was
now part of ASDF 3, it was only natural to bring up to par other
implementations that supported it: CLISP, Clozure CL, CMUCL,
LispWorks, SBCL, SCL. Thus UIOP features a dump-image
function to dump the current heap image, except for ECL and
its successors that follow a linking model and use a create-
image function. These functions were based on code from xcvb-
driver, that had taken them from cl-launch.

ASDF 3 also introduces a defsystem option to specify an
entry point as e.g. :entry-point "my-package:entry-
point". The specified function (designated as a string to be read
after the package is created) is called without arguments after the
program image is initialized; after doing it own initialization, it can
explicitly consult *command-line-arguments* or pass it as
an argument to some main function.

Our experience with the QRes application server at ITA Soft-
ware showed the importance of hooks so that various software com-
ponents may modularly register finalization functions to be called
before dumping the image, and initialization functions to be called
before calling the entry point. Therefore, we added support for im-
age lifecycle to UIOP. We also added basic support for running
programs non-interactively as well as interactively: non-interactive
programs exit with a backtrace and an error message repeated
above and below the backtrace, instead of inflicting a debugger on
end-users; any non-nil return value from the entry-point function
is considered success and nil failure, with an according program
exit status.

Starting with ASDF 3.1, implementations that don’t support
standalone executables may still dump a heap image using the
image-op operation, and a wrapper script, e.g. created by cl-
launch, can invoke the program; delivery is then in two files
instead of one. image-op can also be used by all implementations
to create intermediate images in a staged build, or to provide ready-
to-debug images for otherwise non-interactive applications.

2.9 cl-launch

Running Lisp code to portably create executable commands from
Lisp is great, but there is a bootstrapping problem: when all you can
assume is the shell command line, how are you going to portably
invoke the Lisp code that creates the initial executable to begin
with?

This problem was solved some years ago with cl-launch.
This bilingual program, both a portable shell script and a CL pro-
gram, provides a nice shell command interface to building shell
commands from Lisp code, including delivery as either portable
shell scripts or self-contained precompiled executable files.

Its latest incarnation, cl-launch 4 (March 2014), was up-
dated to take full advantage of ASDF 3; its build specification in-
terface was made more general, and its Unix integration was im-
proved.

You thus may directly invoke Lisp code from the shell command-
line:
cl -sp lisp-stripper \

-i "(print-loc-count \"asdf.lisp\")"
It can also be used as a script "interpreter", except with a Lisp

compiler underneath, where desired:
#!/usr/bin/cl -sp lisp-stripper -E main
(defun main (argv)

(if argv
(map () ’print-loc-count argv)
(print-loc-count *standard-input*)))

In the examples above, option -sp, shorthand for –system-
package, simultaneously loads a system using ASDF during the



build phase, and appropriately selects the current package; -i,
shorthand for –init evaluates a form after the software is built;
-E, shorthand for –entry configures a function that is called
when the program starts, with the list of command-line arguments
as its argument.6 As for lisp-stripper, it’s a simple library
that counts lines of code after removing comments, blank lines,
docstrings, and multiple lines in strings.

cl-launch automatically detects a CL implementation in-
stalled on your machine, with sensible defaults. You can easily
override all defaults with a proper command-line option, a con-
figuration file, or some installation-time configuration. See cl-
launch –more-help for complete information. Note that cl-
launch is on a bid to homestead the executable path /usr/bin/cl
on Linux distributions; it may slightly more portably be invoked as
cl-launch.

A nice use of cl-launch is to compare how various imple-
mentations evaluate some form, to see how portable it is in practice,
whether the standard mandates a specific result or not:
for l in sbcl ccl clisp cmucl ecl abcl \

scl allegro lispworks gcl xcl ; do
cl -l $l -i \
’(format t "’$l’: ∼S∼%" ‘#5(1 ,@‘(2 3)))’ \
2>&1 | grep "^$l:" # LW, GCL are verbose

done
cl-launch compiles all the files and systems that are speci-

fied, and keeps the compilation results in the same output-file cache
as ASDF 3, nicely segregating them by implementation, version,
ABI, etc.7 Therefore, the first time it sees a given file or system, or
after they have been updated, there may be a startup delay while
the compiler processes the files; but subsequent invocations will
be faster as the compiled code is directly loaded. This is in sharp
contrast with other "scripting" languages, that have to slowly inter-
pret or recompile everytime. For security reasons, the cache is not
shared between users.

2.10 asdf/package-system

ASDF 3.1 introduces a new asdf/package-system exten-
sion, that supports a one-file, one-package, one-system style of pro-
gramming. This style was pioneered by Peter Etter’s faslpath,
and more recently by Alastair Bridgewater’s quick-build.
asdf/package-system is actually compatible with the lat-
ter, though not with the former, for ASDF 3.1 and quick-build
use a slash "/" as a hierarchy separator, where faslpath used a
dot ".".

The principle of this lightweight system definition style is
that every file thus starts with a defpackage or define-
package form; from its :use and :import-from and sim-
ilar clauses, the build system can identify a list of packages it
depends on, then map the package names to the names of systems
and/or other files, that need to be loaded first. Thus package name
lil/interface/all (downcased if needed), refers to the file
interface/all.lisp, under the package-system hierarchy
registered by system lil, defined as follows in lil.asd:

(defsystem "lil" ...
:description "LIL: Lisp Interface Library"
:class :package-system
:defsystem-depends-on ("asdf-package-system")
:depends-on ("lil/interface/all"

6 Several systems are available to help you define an evaluator for your
command-line argument DSL: command-line-arguments, clon,
lisp-gflags.
7 Historically, it’s more accurate to say that ASDF imported the cache tech-
nology previously implemented by cl-launch, which itself generalized
it from common-lisp-controller

"lil/pure/all" ...)
...)

The :defsystem-depends-on ("asdf-package-system")
is an external extension that provides backward compatibility with
ASDF 3.0, and is part of Quicklisp. Because not all package names
can be directly mapped back to a system name, you can regis-
ter new mappings for asdf/package-system. The lil.asd
file may thus contain forms such as:

(register-system-packages :closer-mop
’(:c2mop :closer-common-lisp :c2cl ...))

Then, a file interface/order.lisp under the lil hierarchy,
that defines abstract interfaces for order comparisons, starts with
the following form:

(uiop:define-package :lil/interface/order
(:use :closer-common-lisp
:lil/interface/definition
:lil/interface/base
:lil/interface/eq :lil/interface/group)

(:mix :fare-utils :uiop :alexandria)
(:export ...))

And all the dependencies are trivially computed from that.
This style provides many maintainability benefits: by imposing

upon programmers a discipline of smaller namespaces, with ex-
plicit dependencies, and forward dependencies especially so, the
style encourages good factoring of the code into coherent units;
by contrast, the traditional style of "everything in one package"
has low overhead, but doesn’t scale very well. ASDF itself was
re-written in this package-system style as part of ASDF 2.27, the
initial ASDF 3 pre-release, for very positive results.

asdf/package-system is not light weight like quick-
build, that is two orders of magnitude smaller than ASDF 3. But
it does interoperate perfectly with the rest of ASDF, from which it
inherits the many features, and the portability and robustness.

2.11 Backwarder compatibility
ASDF 3 had to break compatibility with ASDF 1 and ASDF 2:
any operation that inherited from the operation class hierarchy
used to be propagated sideway and downward along the component
DAG. In most cases, this was an unwanted behavior, and indeed,
ASDF 3 was predicated upon the introduction of a new operation
prepare-op that instead propagates upward along the compo-
nent DAG (see Appendix F). Most existing extensions to ASDF thus
included various workarounds and approximations to deal with the
issue. But there were a handful extensions that did expect this be-
havior, and now they were broken.

Before the release of ASDF 3, authors of all known ASDF
extensions distributed by Quicklisp had been contacted, to make
their code compatible with the new fixed model. But there was
no way to contact unidentified authors of proprietary extensions,
beside sending an announcement to the mailing-list. Yet, whatever
message was sent didn’t attract enough attention. Even our co-
maintainer Robert Goldman got bitten hard when an extension used
at work stopped working, wasting days of debugging to figure out
the issue.

Therefore, ASDF 3.1 features enhanced backward-compatibility.
The class operation implements sideway and downward prop-
agation on all classes that do not explicitly inherit from any
of the propagating mixins downward-operation, upward-
operation, sideway-operation or selfward-operation,
unless they explicitly inherit from the new mixin non-propagating-
operation. ASDF 3.1 signals a warning at runtime when an
operation class is instantiated that doesn’t inherit from any of the
above mixins, which will hopefully tip off authors of a proprietary

http://fare.tunes.org/files/asdf3/asdf3-2014.html#traverse


extension that it’s time to upgrade. To tell ASDF 3.1 that their op-
eration class is not backward, extension authors may have to define
their non-propagating operations as follows:
(defclass my-op (#+asdf3.1 non-propagating-
operation operation) ())

This is a case of "negative inheritance", a technique usually
frowned upon, for the explicit purpose of backward compatibility.
Now ASDF cannot use the CLOS Meta-Object Protocol (MOP),
because it hasn’t been standardized enough to be portably used
without using an abstraction library such as closer-mop, yet
ASDF cannot depend on any external library, and this is too small
an issue to justify making a sizable MOP library part of UIOP.
Therefore, the negative inheritance is implemented in an ad hoc
way at runtime.

3. Code Evolution in a Conservative Community
3.1 Feature Creep? No, Mission Creep
Throughout the many features added and decupling in size from
ASDF 1 to ASDF 3, ASDF remained true to its minimalism — but
the mission, relative to which the code remains minimal, was ex-
tended, several times: In the beginning, ASDF was the simplest
extensible variant of defsystem that builds CL software. With
ASDF 2, it had to be upgradable, portable, modularly configurable,
robust, performant, usable. Then it had to be more declarative, more
reliable, more predictable, and capable of supporting language ex-
tensions. Now, it has to support a cleaner new model for represent-
ing dependencies, software delivery as either scripts or binaries, a
cleaner one-package-per-file style, a documented portability layer
including image lifecycle and external program invocation, etc.

3.2 Backward Compatibility is Social, not Technical
As efforts were made to improve ASDF, a constant constraint was
that of backward compatibility: every new version of ASDF had to
be compatible with the previous one, i.e. systems that were defined
using previous versions had to keep working with new versions.
But what more precisely is backward compatibility?

In an overly strict definition that precludes any change in be-
havior whatsoever, even the most uncontroversial bug fix, is not
backward-compatible: any change, for the better as it may be, is
incompatible, since by definition, some behavior has changed!

One might be tempted to weaken the constraint a bit, and define
"backward compatible" as being the same as a "conservative exten-
sion": a conservative extension may fix erroneous situations, and
give new meaning to situations that were previously undefined, but
may not change the meaning of previously defined situations. Yet,
this definition is doubly non satisfactory. On the one hand, it pre-
cludes any amendment to previous bad decisions; hence, the jest if
it’s not backwards, it’s not compatible. On the other hand, even if
it only creates new situations that work correctly where they were
previously in error, some analysis tool might exist that assumed
these situations could never arise, and if stumbled that they now
do.

Indeed this happened when ASDF 3 tried to better support "sec-
ondary systems". ASDF looks up systems by name: if you try to
load system foo, ASDF will search in registered directories for a
file call foo.asd. Now, it was common practice that program-
mers may define multiple "secondary" systems in a same .asd
file, such as a test system foo-test in addition to foo. This
could lead to "interesting" situations when a file foo-test.asd
existed, possibly from a different, otherwise shadowed, version of
the same library. ASDF 2 required robustifying against the infinite
loops that could result. To make these situations less likely, ASDF
3 recommends that you name your secondary system foo/test
instead of of foo-test, which should work just as well in ASDF

2, but with reduced risk of clash. Moreover, ASDF 3 can recog-
nize the pattern and automatically load foo.asd when requested
foo/test, in a way guaranteed not to clash with previous usage,
since no directory could contain a file thus named in any modern
operating system. In contrast, ASDF 2 has no way to automatically
locate the .asd file from the name of a secondary system, and so
you must ensure that you loaded the primary .asd file before you
may use the secondary system. This feature may look like a text-
book case of a backward-compatible "conservative extension". Yet,
it’s the major reason why Quicklisp itself still hasn’t adopted ASDF
3: Quicklisp assumed it could always create a file named after each
system, which happened to be true in practice (though not guaran-
teed) before this ASDF 3 innovation; systems that newly include
secondary system using this style break this assumption, and will
require non-trivial work for Quicklisp to support.

What then, is backward compatibility? It isn’t a technical con-
straint. Backward compatibility is a social constraint. The new
version is backward compatible if the users are happy. This doesn’t
mean matching the previous version on all the mathematically con-
ceivable inputs; it means improving the results for users on all the
actual inputs they use; or providing them with alternate inputs they
may use for improved results.

3.3 Weak Synchronization requires Incremental Fixes
Even when some "incompatible" changes are not controversial,
it’s often necessary to provide temporary backward compatible
solutions until all the users can migrate to the new design. Changing
the semantics of one software system while other systems keep
relying on it is akin to changing the wheels on a running car:
you cannot usually change them all at once, at some point you
must have both kinds active, and you cannot remove the old ones
until you have stopped relying on them. Within a fast moving
company, such migration of an entire code base can happen in a
single checkin. if it’s a large company with many teams, it can take
many weeks or months. When the software is used by a weakly
synchronized group like the CL community, the change can take
years.

When releasing ASDF 3, it took a few months to fix all the
publicly available systems that were affected by any of the minor
incompatibilities. A lot of the work consisted in fixing ASDF 3
itself to be more compatible. Indeed, several intended changes had
to be forsaken, that didn’t have an incremental upgrade path, and
for which it proved infeasible to fix all the clients.

A successful change was notably to modify the default encoding
from the uncontroled environment-dependent :default to the de
facto standard :utf-8; this happened a year after adding support
for encodings and :utf-8 was added, and having forewarned
community members of the future change in defaults, yet a few
systems still had to be fixed (see Appendix D).

On the other hand, an unsuccessful change was the attempt to
enable an innovative system to control warnings issued by the com-
piler. First, the *uninteresting-conditions* mechanism
allows system builders to hush the warnings they know they don’t
care for, so that any compiler output is something they care for,
and whatever they care for isn’t be drowned into a sea of unin-
teresting output. The mechanism itself is included in ASDF 3, but
disabled by default, because there was no consensually agreeable
value except an empty set, and no good way (so far) to configure it
both modularly and without pain. Second, another related mech-
anism that was similarly disabled is deferred-warnings,
whereby ASDF can check warnings that are deferred by SBCL
or other compilers until the end of the current compilation-unit.
These warnings notably include forward references to functions
and variables. In the previous versions of ASDF, these warnings
were output at the end of the session at the first time a file was

http://fare.tunes.org/files/asdf3/asdf3-2014.html#Encoding_support
Robert Strandh
Remove comma after "bug fix".


Robert Strandh
Explain why an infinite loop could
happen.

Robert Strandh
This phrase has a dangling 
participle.  "When releasing..." 
must be followed by a reference
to the person that did the release. 
Here, you have "it", which is not
considered good grammar.


Robert Strandh
Not many native speakers of
English use "consist in" anymore.
It is better to always say
"consist of".

Robert Strandh
"isn't be"?  



built, not checked, and not displayed afterwards. If in ASDF 3 you
(uiop:enable-deferred-warnings), these warnings are
displayed and checked every time a system is compiled or loaded.
This helps catch more bugs, however, enabling this feature prevents
the successful loading of a lot of systems in Quicklisp that have
such bugs, even though the main functionality of these systems is
not affected by these bugs. Until there exists some configuration
system that allows developers to run all these checks on new code
without having them break old code, the feature will have to remain
disabled by default.

3.4 Underspecification creates Portability Landmines
The CL standard leaves many things underspecified about path-
names, in an effort to define a useful subset common to many exist-
ing implementations. However, the result is that portable programs
can forever only access but a small subset of the complete required
functionality, making its standard less useful than if it had not spec-
ified anything, and left the job to another standard.Appendix C The
lesson is don’t standardize partially specified features. It’s better
to standardize that some situations to cause an error, to reserve any
resolution to a later version of the standard (and then follow up
on it), or to delegate specification to other standards, existing or
future.

There could have been one pathname protocol per operating
system, delegated to the underlying OS via a standard FFI. Li-
braries could then have sorted out portability over N operating sys-
tems. Instead, by standardizing but a common fragment and letting
each implementation do whatever it can on each operating system,
libraries now have to take into account N*M combinations of op-
erating systems and implementations. In case of disagreement, it’s
much better to let each implementation’s variant exist in its own,
distinct namespace, which avoids any confusion, than have incom-
patible variants in the same namespace, causing clashes.

Interestingly, the aborted proposal for including defsystem
in the CL standard was also of the kind that would have specified
a minimal subset insufficient for large scale use while letting the
rest underspecified. The CL community probably dodged a bullet
thanks to the failure of this proposal.

3.5 Safety before Ubiquity
Guy Steele has been quoted as vaunting the programmability of
Lisp’s syntax by saying: If you give someone Fortran, he has
Fortran. If you give someone Lisp, he has any language he pleases.
Unhappily, if he were speaking about CL specifically, he would
have had to add: but it can’t be the same as any one else’s.

Indeed, syntax in CL is controled via a fuzzy set of global
variables, prominently including the *readtable*. Now mak-
ing non-trivial modifications to the variables and/or tables is possi-
ble, but letting these modifications escape is a serious issue; for the
author of a system has no control on which systems will or won’t
be loaded before or after his system — this depends on what the
user requests; therefore in absence of further convention, it’s al-
ways a bug to either rely on the syntax tables having non-default
values from previous systems, or to inflict non-default values upon
next systems. What is worse, changing syntax is only useful if it
also happens at the interactive REPL; yet these interactive syntax
changes can affect files built from the REPL, including, upon mod-
ification, components that do not depend on the syntax support, or
worse, that the syntax support depends on; this can cause catas-
trophic circular dependencies, and require a fresh start after having
cleared the output file cache. Systems like named-readtables
or cl-syntax help with syntax control, but proper hygiene is not
currently enforced by either CL or ASDF, and remains up to the
user, especially at the REPL.

Build support is therefore strongly required for safe syntax mod-
ification; but this build support is not there yet in ASDF 3 because
of backward-compatibility reasons. One option would be to enforce
hygiene by binding the syntax tables to a read-only copies of the
standard tables around each action; actions that want to modify
syntax then have to explicitly use different tables. Another option
would be to provide hygiene by binding the syntax tables to a fresh
writable copies of the standard tables around each action, or maybe
to have actions share per-system tables, that may be initialized ac-
cording in various simple or elaborate ways. In either case, a change
is required in how ASDF behaves and how it’s extended; doing it
in backward-compatible way is technically hard but not impossi-
ble, but first requires identifying the idioms that need or need not
be supported: otherwise the change may break tens of existing sys-
tems, that have to be fixed beforehand, which is socially hard.

Until such issues are resolved, even though the Lisp ideal is
one of ubiquitous syntax extension, and indeed extension through
macros is ubiquitous, extension though reader changes are rare in
the CL community. This is in contrast with other Lisp dialects, such
as Racket, that have succeeded at making syntax customization
both safe and ubiquitous, by having it be strictly scoped to the
current file or REPL. Any language feature has to be safe before
it may become ubiquitous.

3.6 Final Lesson: Explain it
While writing this article, we had to revisit many concepts and
pieces of code, which led to many bug fixes and refactorings
to ASDF and cl-launch. An earlier interactive "ASDF walk-
through" via Google Hangout also led to enhancements. This illus-
trates the principle that you should always explain your programs:
having to intelligibly verbalize the concepts will make you under-
stand them better.

Bibliography
Daniel Barlow. ASDF Manual. 2004. http://common-lisp.net/

project/asdf/
Zach Beane. Quicklisp. 2011. http://quicklisp.org/
François-René Rideau and Spencer Brody. XCVB: an eXtensible Com-

ponent Verifier and Builder for Common Lisp. 2009. http://
common-lisp.net/projects/xcvb/

François-René Rideau and Robert Goldman. Evolving ASDF: More Co-
operation, Less Coordination. 2010. http://common-lisp.net/
project/asdf/doc/ilc2010draft.pdf

Mark Kantrovitz. Defsystem: A Portable Make Facility for Com-
mon Lisp. 1990. ftp://ftp.cs.rochester.edu/pub/
archives/lisp-standards/defsystem/pd-code/
mkant/defsystem.ps.gz

Kent Pitman. The Description of Large Systems. 1984. http://www.
nhplace.com/kent/Papers/Large-Systems.html

François-René Rideau. ASDF3, or Why Lisp is Now an Acceptable Script-
ing Language (extended version). 2014. http://fare.tunes.
org/files/asdf3/asdf3-2014.html

http://fare.tunes.org/files/asdf3/asdf3-2014.html#pathnames
http://common-lisp.net/project/asdf/
http://common-lisp.net/project/asdf/
http://quicklisp.org/
http://common-lisp.net/projects/xcvb/
http://common-lisp.net/projects/xcvb/
http://common-lisp.net/project/asdf/doc/ilc2010draft.pdf
http://common-lisp.net/project/asdf/doc/ilc2010draft.pdf
ftp://ftp.cs.rochester.edu/pub/archives/lisp-standards/defsystem/pd-code/mkant/defsystem.ps.gz
ftp://ftp.cs.rochester.edu/pub/archives/lisp-standards/defsystem/pd-code/mkant/defsystem.ps.gz
ftp://ftp.cs.rochester.edu/pub/archives/lisp-standards/defsystem/pd-code/mkant/defsystem.ps.gz
http://www.nhplace.com/kent/Papers/Large-Systems.html
http://www.nhplace.com/kent/Papers/Large-Systems.html
http://fare.tunes.org/files/asdf3/asdf3-2014.html
http://fare.tunes.org/files/asdf3/asdf3-2014.html
Robert Strandh
Do not use unqualified "this".
Here, maybe "This feature helps..."?


Robert Strandh
control "over", not "on"

Robert Strandh
"for" backward-compatibility reasons.
Not "because of".


Robert Strandh
Either "a read-only copy" or
"read-only copies"

Robert Strandh
Don't use "this" without a 
qualifier.


	Introduction
	1 What ASDF is
	1.1 ASDF: Basic Concepts
	1.1.1 Components
	1.1.2 Example System Definitions
	1.1.3 Action Graph
	1.1.4 In-image

	1.2 Comparison to C programming practice

	2 ASDF 3: A Mature Build
	2.1 A Consistent, Extensible, Model
	2.2 Bundle Operations
	2.3 Understandable Internals
	2.4 Package Upgrade
	2.5 Portability Layer
	2.6 run-program
	2.7 Configuration management
	2.8 Standalone Executables
	2.9 cl-launch
	2.10 asdf/package-system
	2.11 Backwarder compatibility

	3 Code Evolution in a Conservative Community
	3.1 Feature Creep? No, Mission Creep
	3.2 Backward Compatibility is Social, not Technical
	3.3 Weak Synchronization requires Incremental Fixes
	3.4 Underspecification creates Portability Landmines
	3.5 Safety before Ubiquity
	3.6 Final Lesson: Explain it

	Bibliography

